电火花曲面展成加工的研究nbsp;来源:福建泉州华侨大学机电及自动化学院nbsp;作者:刘石安nbsp;【摘nbsp;要】研究数控电火花铣削加工工艺,探索大面积曲面铣削加工方法,加工路径直接由通用模具设计软件生成,电极损耗补偿按加工路径均匀递增补偿法计算。【关键词】电火花加工;电火花铣削加工;电极补偿http://www.suzhou-mould.com/tech_detail.asp?keyno=83电火花成形是模具型腔加工的主要方式,其加工质量关键之一是电极的制造,由于粗、中、精加工时的放电间隙不同,电极尺寸也应不同,因此需制作多个电极才能最终满足加工精度的要求。特别是型腔加工面积较大时,有时还必须使用分割电极加工法,依次完成型腔各个部分的加工。由此使电极制作成本增高。分割电极加工时,型腔表面还会产生接缝以及电极二次装夹重复定位精度问题,这些都会影响电火花成形加工的质量。随着数控技术的发展,模具型腔加工有了新的工艺方法——数控电火花铣削加工,即用简单电极展成复杂型面。数控电火花铣削加工工艺的关键是加工路径的生成和电极损耗的补偿。对此国内外许多电加工学者做了大量深入细致的研究,如研究等损耗分层加工模型以及基于该模型建立加工路径生成的专用CAM软件,研究电极损耗精密检测技术、在线电极补偿等[1~4]。数控电火花铣削工艺可进行修尖角加工、窄缝加工及侧面伺服加工等,但本文更关心的是空间直线伺服进给问题,研究的主要内容集中于空间曲线轨迹加工方向、空间曲面展成加工方向,探索型腔型面的数控电火花铣削加工工艺。本文引用金属切削加工中心的工艺路线,应用通用的模具加工软件UG造型,生成加工路径,并将加工代码编译成具体机床的数控指令。在电极损耗补偿方面,只考虑Z轴方向的补偿,并提出沿电极加工路径、按轨迹路程均匀递增补偿电极损耗的方法。1nbsp;数控电火花铣削加工工艺加工中心的铣削加工工艺已很成熟,故将其引入数控电火花铣削加工工艺中。经过研究和实验,已证实轮廓加工、挖槽加工、沿曲面加工、修边、去残留等加工问题都能用数控电火花铣削加工方法解决,也就是说数控电火花铣削加工中的加工路径生成问题可以用通用模具加工软件解决。值得注意的是电火花铣削加工并不等同金属切削加工,由于放电间隙和电极损耗的存在,会对型腔尺寸精度产生影响,因此在给数控电火花铣削加工编程时必须注意如下问题:(1)nbsp;加工余量。该参量的最小值要求大于放电间隙,超精加工时加工余量并不为零,且前一道工序要给后一道工序留下余量。(2)nbsp;加工方式。在轮廓加工或挖槽加工时可以选择生成圆弧段程序。而在沿曲面加工时必须选择直线加工方式,包括切入切出程序,即程序段必须是空间微直线段,这也有利于电极损耗补偿计算。(3)nbsp;加工精度。加工精度越高,弦线对空间曲线的逼近度越高,空间微直线段越多,程序越长。实际加工时,粗加工可以选择低一点的精度,以减少程序段数。(4)nbsp;残余波峰高。该参量指刀具横向进给量,其值越小,加工曲面越光顺。该参量也可以用刀具直径的百分比表示。(5)nbsp;电极尺寸。本文要求每次加工编程时输入电极直径的实测值,这样可让电极损耗补偿计算只须放在Z轴方向。(6)nbsp;电参量和电极长度补偿。电参量的选择要参考加工余量,超精加工时要选择正极性加工方式,要用电子的能量去修平放电痕凸起。电极损耗补偿值依工艺经验而定,它与电参量、电极材料对及工作液等相关。电极损耗补偿值均匀插入每个微直线段端点上。数控电火花铣削加工编程路线(图1)按上述6个方面要求设置参量,就可生成粗、中、精加工路径及机床数控指令。加工余量、加工方式、精度、残余波峰高、实际电极尺寸nbsp;零件毛坯nbsp;UG-NXnbsp;刀具路径补偿软件nbsp;电参数nbsp;刀具长度补偿值输入nbsp;电火花数控铣削加工程序nbsp;图1nbsp;数控电火花铣削加工编程路线用模具软件UG设计了一空间曲面,上有“电火花”字样。为体现数控电火花铣削加工能力,将所有工序全部采用数控电火花铣削加工方案。粗加工用ф14mm电极,按挖槽采用分层加工,横向进刀为电极直径的80%;中精加工用ф8mm和ф4mm的端电极,按矢量、沿曲面方式加工,横向进刀分别为电极直径的8%和2.5%。图2为中精加工刀具路径。电极ф8mm,E293nbsp;电极ф4mm,
补充知识:单轴数控电火花成型机床
一般传统上不按照控制方式分类。按以下分类方法。 一、按加工工艺方法分类 1.金属切削类数控机床 与传统的车、铣、钻、磨、齿轮加工相对应的数控机床有数控车床、数控铣床、数控钻床、数控磨床、数控齿轮加工机床等。尽管这些数控机床在加工工艺方法上存在很大差别,具体的控制方式来自也各不相同,但机床的动作和运动都是数字化控制的,具有较高的生产率和自动化程度。 在普通数控机床加装一个刀库和换刀装置就成为数控加工中心机床。加工中心机床进一步提高了普通数控机床的自动化程度和生产效率。例如铣、镗、钻加工中心,它是在数控铣床基础上增加了一个容量较大的刀库和自动换刀装置形成的,工件一次装夹后,可以对箱体零件的四面甚至五面大部分加工工序进行铣、镗、钻、扩、铰以及攻螺纹等多工序加工,特别适合箱体类零件的加工。加工中心机床可以有效地避免由于工件多次安装造成的定位误差,减少了机床的台数和占地面积,缩短了辅助时间,大大提高了生产效率和加工质量。 2.特种加工类数控机床 除了切削加工数控机床以外,数控助位两袁还频于怎连良技术也大量用于数控电火花线切割机床、数控电火花成型机床径美孙、数控等离子弧切割机床、数控火焰切割机床以及数控激光加工机床等。 3.板材加工类定众数控机床 常见的应用于金属板材加工的数控机床有数控压力机、数控剪板机和数控折弯机等。 近年来,其它机械设备中也大量采用了接设超数控技术,如数控多坐标测量机、自动绘图机及工业机器人等。 二、按控制运动轨迹分类 1.点位控制数控机床 点位控制数控机床的特点是机床移动部件只能实现由一个位置到另一个位置的精确定位,在移动和定位过程中不进行任何武沿洋讲孔加工。机床数控系统只控制行程终点的坐标值,不联诉斯解环众控制点与点之间的运动轨迹,因此几个坐标轴之间的运动无任何联站政振沿利演食沿期兴确系。可以几个坐标同时向目似标点运动,也可以脚广积血各个坐标单独依次运动。 这类数控机床主要有数控坐标镗床、数控钻床、数控冲床、数控点焊机等。点位控制数控机床的数控装置称为点位较客生团顶调官留数控装置。 2.直线控制数控机床 直线控制数控机床可控制刀具或工作台以适当的进给速度,沿着平行于坐标轴的方向进行直线移动和切削加工,进给速度根据切削条件可在一定范围内变化。 直线控制的简细间王督直间预易数控车床,只有两个坐标轴,可加工阶梯轴。直线控制的数控铣床,有三个坐标轴,可用于平面的铣削加工。现代组合机床采用数控进给伺服系统,驱动动力头带有多轴箱的轴向进给进行钻镗加工,它也可算某器仍是一种直线控制数控机床。 数控镗铣床、念倒提停加工中心等机床,它的各个坐标方向的进给运动的速度能在一定范围内进行调整,兼有点位和直线控制加工的功能,这类机床应该称为点位/直线控制的数控机床。 3.轮廓控制数控机床 轮廓控制数控临观指机床能够对两个或两个以上运动的位移及速度进行连所位七老状业爱布育续相关的控制,使合成的平面或空间的运动轨迹能满足零件轮廓的要求。它不仅管践苦化优每通图诗块能控制机床移动部件的起点与终办在决粉点坐标,而且能控制整站攻次剂世士什济传备同个加工轮廓每一点的速度和位移,将工件加工成要求的轮廓形状。 常用的数控车床、数控铣床、数控磨床就是典型的轮廓控制数控机床。数控火焰切割机、电火花加工机床以及数控绘图机等也采用了轮廓控制系统。轮廓控制系统的结构要比点位/直线控系统更为复杂,在加工过程中需要不断进行插补运算,然后进行相应的速度与位移控制。 现在计算机数控装置的控制功能均由软件实现,增加轮廓控制功能不会带来成本的增加。因此,除少数专用控制系统外,现代计算机数控装置都具有轮廓控制功能。 三、按驱动装置的特点分类 1.开环控制数控机床 这类控制的数控机床是其控制系统没有位置检测元件,伺服驱动部件通常为反应式步进电动机或混合式伺服步进电动机。数控系统每发出一个进给指令,经驱动电路功率放大后,驱动步进电机旋转一个角度,再经过齿轮减速装置带动丝杠旋转,通过丝杠螺母机构转换为移动部件的直线位移。移动部件的移动速度与位移量是由输入脉冲的频率与脉冲数所决定的。此类数控机床的信息流是单向的,即进给脉冲发出去后,实际移动值不再反馈回来,所以称为开环控制数控机床。 开环控制系统的数控机床结构简单,成本较低。但是,系统对移动部件的实际位移量不进行监测,也不能进行误差校正。因此,步进电动机的失步、步距角误差、齿轮与丝杠等传动误差都将影响被加工零件的精度。开环控制系统仅适用于加工精度要求不很高的中小型数控机床,特别是简易经济型数控机床。 2.闭环控制数控机床 闭环控制数控机床是在机床移动部件上直接安装直线位移检测装置,直接对工作台的实际位移进行检测,将测量的实际位移值反馈到数控装置中,与输入的指令位移值进行比较,用差值对机床进行控制,使移动部件按照实际需要的位移量运动,最终实现移动部件的精确运动和定位。从理论上讲,闭环系统的运动精度主要取决于检测装置的检测精度,也与传动链的误差无关,因此其控制精度高。图1-3所示的为闭环控制数控机床的系统框图。图中A为速度传感器、C为直线位移传感器。当位移指令值发送到位置比较电路时,若工作台没有移动,则没有反馈量,指令值使得伺服电动机转动,通过A将速度反馈信号送到速度控制电路,通过C将工作台实际位移量反馈回去,在位置比较电路中与位移指令值相比较,用比较后得到的差值进行位置控制,直至差值为零时为止。这类控制的数控机床,因把机床工作台纳入了控制环节,故称为闭环控制数控机床。 闭环控制数控机床的定位精度高,但调试和维修都较困难,系统复杂,成本高。 3.半闭环控制数控机床 半闭环控制数控机床是在伺服电动机的轴或数控机床的传动丝杠上装有角位移电流检测装置(如光电编码器等),通过检测丝杠的转角间接地检测移动部件的实际位移,然后反馈到数控装置中去,并对误差进行修正。通过测速元件A和光电编码盘B可间接检测出伺服电动机的转速,从而推算出工作台的实际位移量,将此值与指令值进行比较,用差值来实现控制。由于工作台没有包括在控制回路中,因而称为半闭环控制数控机床。 半闭环控制数控系统的调试比较方便,并且具有很好的稳定性。目前大多将角度检测装置和伺服电动机设计成一体,这样,使结构更加紧凑。 4.混合控制数控机床 将以上三类数控机床的特点结合起来,就形成了混合控制数控机床。混合控制数控机床特别适用于大型或重型数控机床,因为大型或重型数控机床需要较高的进给速度与相当高的精度,其传动链惯量与力矩大,如果只采用全闭环控制,机床传动链和工作台全部置于控制闭环中,闭环调试比较复杂。混合控制系统又分为两种形式: (1)开环补偿型。它的基本控制选用步进电动机的开环伺服机构,另外附加一个校正电路。用装在工作台的直线位移测量元件的反馈信号校正机械系统的误差。 (2)半闭环补偿型。它是用半闭环控制方式取得高精度控制,再用装在工作台上的直线位移测量元件实现全闭环修正,以获得高速度与高精度的统一。其中A是速度测量元件(如测速发电机),B是角度测量元件,C是直线位移测量元件。